
 

 

SWEN-261 
Introduction to Software 
Engineering 

Department of Software Engineering 
Rochester Institute of Technology 

Domain-Driven Design 



Domain driven design centers the architecture on 
the problem domain. 

Quote from the DDD Community: 
Domain-driven design (DDD) is an approach to developing 

software for complex needs by deeply connecting the 

implementation to an evolving model of the core business 

concepts 

 The premise: 
• Place the project’s primary focus on the core domain 

and domain logic 

• Base complex designs on a model 

• Initiate a creative collaboration between technical 

and domain experts to iteratively cut ever closer to 

the conceptual heart of the problem 

2 

http://dddcommunity.org/


Let's review our project architecture. 

3 

Client UI Application Model 

HTML, CSS 

& JavaScript 

Java 

Web server (Jetty) 

Any OS and HW 

Any 

Browser 

Any 

OS/HW 

Server UI 

Spark & 

FreeMarker Frameworks 

Platform 

OS/Hardware 

Network 

Connection 

What goes in these 

two tiers? 



DDD provides guidance for the remaining tiers. 

4 

Client UI Application Model 

HTML, CSS 

& JavaScript 

Java 

Web server (Jetty) 

Any OS and HW 

Any 

Browser 

Any 

OS/HW 

Server UI 

Spark & 

FreeMarker Frameworks 

Platform 

OS/Hardware 

Network 

Connection 



Services provide application logic. 

 The Application tier is responsible for managing 

the user's interaction with the application. 

 It is not responsible for domain logic which is in 

the Model layer. 

Application tier elements provide services to each 

client connection. 
• Manage application-wide logic and information 

• Provide client-specific services for the UI tier 

5 



Entities provide domain logic. 

 The Model tier is responsible for managing 

domain entities and domain logic. 

Entity responsibilities are: 
• Process user requests/commands 

• Effect changes based on user requests/commands 

• Validate Model-tier rules 

• Maintain the state of the Model 

Entities often represent information about the 

world, and are inspired by domain model entities 
• Customers, products and orders in e-commerce 

• Shapes in a drawing app 

6 



Value objects provide values for an entity's 
"complex" attributes. 

A value object class encapsulates the data that 

represents an entity's attribute. 
• Measurements, dates, credit card numbers, money, 

colors, (x,y) coordinates are some examples. 

• Two value objects are equal based on equality of the 

data in the object not object identity. 

Value objects must be immutable. 
• An address of 15 N. Main St cannot be changed into 

352 2nd Ave. 

• You create a new address object of 352 2nd Ave. 

A value object class is not just a data holder class. 
• Value Object = "value semantics" + immutability + 

GRASP Information Expert, ref. Flight class in OOD I 

7 



Model objects are frequently used in collections. 

Many of the algorithms used in Model and 

Application components require using Entities and 

Value Objects in hash-based collections. 

Normal Java equality semantics are not adequate 

when dealing with Entities and VOs 
• An Entity must have a distinct id such that two 

objects with the same id must be considered equal. 

• Two Value Objects with the same data must be equal. 

• These semantic requirements imply specialized 
equals and hashCode methods. 

 The after-class exercise provides instructions on 

how to create these methods. 

8 



A semantically correct value object can be used as 
a key in a map collection. 

Rather than extracting attributes from the value 

object to create a key, use the value object directly. 

 This will work correctly because 
• The value object is immutable  other code with a 

reference to the object can not change the object's 

value while it is in the map as a key 
• The equals and hashCode methods ensure that two 

objects with the same value will be considered equal 

and generate the same hash code. 

9 



Let's review the architecture again. 

10 



This is the list of component responsibilities. 

11 

UI Tier Application Tier Model Tier 

UI Controller: 
• Control the views based on the state of the 

application 

• Query the Model and Application tier as 

necessary to get information to present to the 

user 

• Perform simple input validation and data 

conversion based on input modality, e.g. 

String to integer 

• Initiate processing of user 

requests/commands possibly providing data 

the user input 

• Perform data conversion for display by views 

 

UI View: 
• Provide an interface to the user 

• Present information to the user in a variety 

of ways 

• Provide a mechanism for user to input data 

and requests 

Service: 
• Manage application-wide 

logic and information 

• Provide client-specific 

services to the UI tier 

 

Entity: 
• Process user requests/commands 

• Effect changes to the Model based 

on user requests/commands 

• Validate model rules 

• Maintain the state of the model 

 

Value Object: 
• Provide immutable value 

semantics 

• Provide value-based logic 


