

SWEN-261
Introduction to Software
Engineering

Department of Software Engineering
Rochester Institute of Technology

Domain-Driven Design

Domain driven design centers the architecture on
the problem domain.

Quote from the DDD Community:
Domain-driven design (DDD) is an approach to developing

software for complex needs by deeply connecting the

implementation to an evolving model of the core business

concepts

 The premise:
• Place the project’s primary focus on the core domain

and domain logic

• Base complex designs on a model

• Initiate a creative collaboration between technical

and domain experts to iteratively cut ever closer to

the conceptual heart of the problem

2

http://dddcommunity.org/

Let's review our project architecture.

3

Client UI Application Model

HTML, CSS

& JavaScript

Java

Web server (Jetty)

Any OS and HW

Any

Browser

Any

OS/HW

Server UI

Spark &

FreeMarker Frameworks

Platform

OS/Hardware

Network

Connection

What goes in these

two tiers?

DDD provides guidance for the remaining tiers.

4

Client UI Application Model

HTML, CSS

& JavaScript

Java

Web server (Jetty)

Any OS and HW

Any

Browser

Any

OS/HW

Server UI

Spark &

FreeMarker Frameworks

Platform

OS/Hardware

Network

Connection

Services provide application logic.

 The Application tier is responsible for managing

the user's interaction with the application.

 It is not responsible for domain logic which is in

the Model layer.

Application tier elements provide services to each

client connection.
• Manage application-wide logic and information

• Provide client-specific services for the UI tier

5

Entities provide domain logic.

 The Model tier is responsible for managing

domain entities and domain logic.

Entity responsibilities are:
• Process user requests/commands

• Effect changes based on user requests/commands

• Validate Model-tier rules

• Maintain the state of the Model

Entities often represent information about the

world, and are inspired by domain model entities
• Customers, products and orders in e-commerce

• Shapes in a drawing app

6

Value objects provide values for an entity's
"complex" attributes.

A value object class encapsulates the data that

represents an entity's attribute.
• Measurements, dates, credit card numbers, money,

colors, (x,y) coordinates are some examples.

• Two value objects are equal based on equality of the

data in the object not object identity.

Value objects must be immutable.
• An address of 15 N. Main St cannot be changed into

352 2nd Ave.

• You create a new address object of 352 2nd Ave.

A value object class is not just a data holder class.
• Value Object = "value semantics" + immutability +

GRASP Information Expert, ref. Flight class in OOD I

7

Model objects are frequently used in collections.

Many of the algorithms used in Model and

Application components require using Entities and

Value Objects in hash-based collections.

Normal Java equality semantics are not adequate

when dealing with Entities and VOs
• An Entity must have a distinct id such that two

objects with the same id must be considered equal.

• Two Value Objects with the same data must be equal.

• These semantic requirements imply specialized
equals and hashCode methods.

 The after-class exercise provides instructions on

how to create these methods.

8

A semantically correct value object can be used as
a key in a map collection.

Rather than extracting attributes from the value

object to create a key, use the value object directly.

 This will work correctly because
• The value object is immutable other code with a

reference to the object can not change the object's

value while it is in the map as a key
• The equals and hashCode methods ensure that two

objects with the same value will be considered equal

and generate the same hash code.

9

Let's review the architecture again.

10

This is the list of component responsibilities.

11

UI Tier Application Tier Model Tier

UI Controller:
• Control the views based on the state of the

application

• Query the Model and Application tier as

necessary to get information to present to the

user

• Perform simple input validation and data

conversion based on input modality, e.g.

String to integer

• Initiate processing of user

requests/commands possibly providing data

the user input

• Perform data conversion for display by views

UI View:
• Provide an interface to the user

• Present information to the user in a variety

of ways

• Provide a mechanism for user to input data

and requests

Service:
• Manage application-wide

logic and information

• Provide client-specific

services to the UI tier

Entity:
• Process user requests/commands

• Effect changes to the Model based

on user requests/commands

• Validate model rules

• Maintain the state of the model

Value Object:
• Provide immutable value

semantics

• Provide value-based logic

